Neurotrophic Biofactories for the Treatment of Glaucoma

Principal Investigator
Anna Demetriades, MD, PhD
Weill Medical College of Cornell University
New York, NY, USA
About the Research Project
Program
Award Type
Standard
Award Amount
$100,000
Active Dates
July 01, 2013 - June 30, 2015
Grant ID
G2013141
Acknowledgement
Goals
Glaucoma is the result of retinal ganglion cell (RGC) death in the eye which ultimately leads to vision loss in patients. RGCs are the nerve cells that extend down the optic nerve and connect the eye to the brain. The aim of this study is to develop a novel treatment for patients by identifying a new way to slow down and prevent RGC death. Dr. Demetriades’ team will use gene therapy to deliver neuroprotective proteins to specific cells within the retina and determine whether it is best to deliver these proteins directly to RGCs or to adjacent cells in order to optimally improve their survival.
Summary
The goal of this project is to develop a new gene therapy treatment for glaucoma patients aimed at slowing down or stopping disease progression.
Dr. Demetriades’ team will use a gene therapy approach to deliver neuroprotective proteins to specific cells within the retina. Retinal ganglion cell (RGC) death is the hallmark of glaucoma. The gene therapy method will deliver therapeutic proteins to RGCs and adjacent cells within the retina to improve their survival.
The innovative aspect of this proposal is the use of a cell-specific gene therapy approach. Dr. Demetriades will develop gene therapy carrier systems that enable delivery of a therapeutic protein to a specific cell type within the retina. This research could lead to the creation of a novel delivery system for the eye.
Current treatments control eye pressure but vision loss may still occur. Dr. Demetriades’ study will provide new insights into the potential of cell-specific gene therapy for the treatment of glaucoma. Their goal through this work is to develop an adjuvant therapy that slows or stops disease progression in order to prevent vision loss.
Related Grants
National Glaucoma Research
Understanding How Variants in LOXL1 Affect Pseudoexfoliation Glaucoma Risk
Active Dates
July 01, 2024 - June 30, 2026

Principal Investigator
Hannah Youngblood, PhD
Current Organization
Georgia Institute of Technology
National Glaucoma Research
Retinal Ganglion Cell Axon Degeneration in a 3D Microfluidic Hydrogel Model
Active Dates
July 01, 2024 - June 30, 2026

Principal Investigator
Shruti Patil, PhD
Current Organization
Indiana University School of Medicine
National Glaucoma Research
The Role of Microtubules in Glaucomatous Schlemm’s Canal Mechanobiology
Active Dates
July 01, 2024 - June 30, 2026

Principal Investigator
Haiyan Li, PhD
Current Organization
Georgia Institute of Technology