Lipid Bilayer Reorganization by Amyloid-Beta Oligomers

About the Research Project
Program
Award Type
Pilot
Award Amount
$149,940
Active Dates
April 01, 2008 - March 31, 2010
Grant ID
A2008307
Goals
This team will use synthetic models of neuronal cell membranes, to study how ABeta interacts with these membranes. The results of these studies will be insight into the damaging effects of ABeta and how this effect varies with membrane lipid composition.
Summary
How do misfolded peptide aggregates interact with lipid membranes? More specifically, how do amyloid-Beta (ABeta) oligomers affect neuronal cell membranes? ABeta is a 40 or 42 amino acids long fragment of the amyloid precursor protein APP which has long been implicated t play a crucial role in the etiology of Alzheimer’s Disease (AD) . A progressively larger body of evidence has recently accrued that the toxic form of ABeta is a soluble aggregation of the protein, and that such ABeta ‘oligomers’ interact strongly with cell membranes. Using novel synthetic membrane models, we have developed suitable experimental tools to address the questions posed above in structural, functional and dynamic terms on the molecular level. In this ADR Pilot Grant award, we will to study the response of such synthetic membranes to ABeta oligomers as a function of membrane composition. We are particularly interested in membrane compositions that mimic the lipid characteristics of neuronal cell membranes in order to investigate whether ABeta oligomers interact with such membranes strongly. The proposed research may have implications for a molecular-scale understanding of the damage that ABeta oligomers inflict on neuronal membranes and may in the long run also help to devise synthetic strategies for the early detection of ABeta oligomers in patient samples. The specific aims of this research are to investigate the interaction of ABeta oligomers with synthetic lipid membranes of well-defined compositions and to correlate the structural, functional and dynamic response of such membranes to ABeta with the aggregation state of the peptide.
Related Grants
Alzheimer's Disease Research
The Effects of Peripheral APOE2 on Alzheimer’s Disease Pathology and Pathways
Active Dates
July 01, 2024 - June 30, 2027

Principal Investigator
Guojun Bu, PhD
Current Organization
Hong Kong University of Science and Technology
Alzheimer's Disease Research
Dysfunction of the Regulation of Cerebral Blood Flow in Alzheimer Disease
Active Dates
July 01, 2022 - June 30, 2025

Principal Investigator
Antoine Anfray, PhD
Current Organization
Weill Medical College of Cornell University
Alzheimer's Disease Research
Abca1 Regulates Lipid Metabolism and Tau Pathology in P301S/ApoE4 Mice
Active Dates
July 01, 2022 - June 30, 2024

Principal Investigator
Alexandra Litvinchuk, PhD
Current Organization
Washington University in St. Louis